Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(μ -2-Pyridinealdazine- $\kappa^4 N, N': N'', N'''$)bis[bis(N, N-di-n-propyldithiocarbamato- $\kappa^2 S, S'$)cadmium(II)]

Pavel Poplaukhin and Edward R. T. Tiekink*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 10 August 2008; accepted 11 August 2008

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.032; wR factor = 0.078; data-to-parameter ratio = 19.6.

The dinuclear centrosymmetric title compound, $[Cd_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_4)]$, features a tetradentate 2pyridinealdazine ligand that chelates two Cd centres. The coordination geometry for Cd is distorted octahedral based on a *cis*-N₂S₄ donor set. In the crystal structure, molecules are connected into a supramolecular chain aligned along the *a* direction *via* C-H···S and C-H··· π contacts, and by π - π contacts [centroid-to-centroid distance 3.5708 (15) Å]. The *n*propyl groups are each disordered, one equally over two sites and the other with a site-occupancy factor of 0.618 (8) for the major component.

Related literature

For background literature, see: Tiekink (2006); Benson *et al.* (2007). For a related structure, see: Lai & Tiekink (2006).

Experimental

Crystal data

 $\begin{bmatrix} Cd_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_4) \end{bmatrix} \\ M_r = 1140.39 \\ Monoclinic, P2_1/c \\ a = 9.0768 (16) \text{ Å} \\ b = 11.137 (2) \text{ Å} \\ c = 25.389 (5) \text{ Å} \\ \beta = 92.216 (3)^{\circ} \end{bmatrix}$

Data collection

Rigaku AFC12 κ /SATURN724 diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.656, T_{max} = 1$ (expected range = 0.582–0.888)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ 299 parameters $wR(F^2) = 0.077$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.71 \text{ e } \text{\AA}^{-3}$ 5861 reflections $\Delta \rho_{min} = -0.72 \text{ e } \text{\AA}^{-3}$

V = 2564.7 (8) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.12 \times 0.10 \text{ mm}$

20914 measured reflections

5861 independent reflections

5539 reflections with $I > 2\sigma(I)$

 $\mu = 1.19 \text{ mm}^-$

T = 98 (2) K

 $R_{\rm int} = 0.031$

Z = 2

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N3/C15-C19 ring.

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C9-H9B\cdots S4^{i}$ 0.99 2.83 3.815 (3) 171 $C16-H16\cdots S3^{ii}$ 0.95 2.82 3.674 (3) 150 $C3-H3B\cdots Cg^{iii}$ 0.95 2.99 3.853 (5) 147					
C9-H9 $B \cdots S4^{i}$ 0.99 2.83 3.815 (3) 171 C16-H16 $\cdots S3^{ii}$ 0.95 2.82 3.674 (3) 150 C3-H3 $B \cdots Cg^{iii}$ 0.95 2.99 3.853 (5) 147	$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$C9-H9B\cdots S4^{i}$ $C16-H16\cdots S3^{ii}$ $C3-H3B\cdots Cg^{iii}$	0.99 0.95 0.95	2.83 2.82 2.99	3.815 (3) 3.674 (3) 3.853 (5)	171 150 147

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) x + 1, y, z; (iii) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2485).

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Lai, C. S. & Tiekink, E. R. T. (2006). Z. Kristallogr. 221, 288-293.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tiekink, E. R. T. (2006). *CrystEngComm*, **6**, 104–118.

Acta Cryst. (2008). E64, m1176 [doi:10.1107/S1600536808025889]

$(\mu$ -2-Pyridinealdazine- $\kappa^4 N, N': N'', N'''$)bis[bis(N, N-di-n-propyldithiocarbamato- $\kappa^2 S, S'$)cadmium(II)]

P. Poplaukhin and E. R. T. Tiekink

Comment

Metal dithiocarbamates have recently been applied in crystal engineering studies (*e.g.* Tiekink, 2006; Benson *et al.*, 2007). The title compound, {[(nPr)₂NCS₂]₂Cd(2-C₅H₄N—C(H)=N—N=C(H)C₅H₄N-2)- Cd[S₂CN(nPr)₂]₂} (I), features a centrosymmetric tetradentate 2-pyridinealdazine ligand coordinating to two Cd centres each of which is chelated by two dithiocarbamate ligands, Fig. 1. The molecule is centrosymmetric about the central N—N bond. The range of Cd—S bond distances is relatively narrow at 2.6124 (8) to 2.7165 (7) Å, but the Cd—N bond formed by the pyridine-N of 2.377 (2) Å is significantly shorter than the Cd—N bond distance of 2.6211 (19) Å formed with the azo-N atom. The coordination geometry is based on an octahedron within a *cis*-N₂S₄ donor set. The structure reported here for (I) resembles closely the dithiophosphate analogue (Lai & Tiekink, 2006). In the crystal structure, molecules are connected into a supramolecular chain, aligned along the a-direction and illustrated in Fig. 2, *via* C—H···S3 and π - π contacts. The latter occur between centrosymmetrically related N3,C15—C19 rings with *Cg*···*Cg* = 3.5708 (15) Å. These are consolidated into the crystal structure *via* additional C—H···S4 contacts and C—H··· π interactions, Table 1 and Fig. 3.

Experimental

Compound (I) was prepared by standard methods (Benson *et al.*, 2007) and red crystals were grown by the slow evaporation of a methanol–ethanol (1/1) solution of (I), m.p. 441-443 K. IR (cm⁻¹): 1474 (s, C=N), 1171 (s, C—S). TGA: One broad step with onset = 625 K, midpoint = 662 K, and endset = 711 K which corresponds to decomposition leading to CdS (mass loss 79.4% *cf.* theoretical mass loss = 74.4%).

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl-C)$. The N1-bound n-propyl groups were each found to be disordered. The C6—C7 residue was disordered over two positions, each with 50% site occupancy factors (from anisotropic refinement). The C3 atom of the C2—C4 residue was disordered over two positions with the major component having a site occupancy factor = 0.618 (8) (from anisotropic refinement).

Figures

Fig. 1. Molecular structure of (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Unlabelled atoms are related by the symmetry operation i: -x, 1 - y, 1 - z. The minor components of the disordered n-propyl groups omitted for clarity.

Fig. 2. View of a supramolecular chain in (I) highlighting the overlap of the aromatic rings to allow the formation of the π - π interactions. The C—H···S3 interactions are shown as orange dashed lines. Colour code: Cd (orange), S (yellow), O (red), N (blue), C (grey) & H (green).

Fig. 3. View in projection of the crystal packing in (I). Colour code as for Fig. 2.

(μ -2-Pyridinealdazine- $\kappa^4 N, N': N'', N'''$)bis[bis(N,N-di-n- propyldithiocarbamato- $\kappa^2 S, S'$)cadmium(II)]

Crvstal	data

$[Cd_2(C_7H_{14}NS_2)_4(C_{12}H_{10}N_4)]$	F(000) = 1172
$M_r = 1140.39$	$D_{\rm x} = 1.477 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71070$ Å
Hall symbol: -P 2ybc	Cell parameters from 16020 reflections
a = 9.0768 (16) Å	$\theta = 1.8 - 40.5^{\circ}$
b = 11.137 (2) Å	$\mu = 1.19 \text{ mm}^{-1}$
c = 25.389 (5) Å	T = 98 K
$\beta = 92.216 \ (3)^{\circ}$	Prism, red
$V = 2564.7 (8) \text{ Å}^3$	$0.35\times0.12\times0.10~mm$
7 = 2	

Data collection

5861 independent reflections
5539 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
$h = -11 \rightarrow 11$
$k = -14 \rightarrow 14$
$l = -32 \rightarrow 31$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.077$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0362P)^{2} + 2.6654P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5861 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
299 parameters	$\Delta \rho_{max} = 0.71 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.72 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd	0.153452 (17)	0.407355 (14)	0.605114 (6)	0.01585 (6)	
S1	0.07349 (7)	0.19908 (6)	0.56627 (3)	0.03080 (16)	
S2	0.37230 (6)	0.24128 (5)	0.61348 (3)	0.02499 (14)	
S3	-0.06899 (6)	0.53972 (6)	0.63409 (2)	0.02094 (12)	
S4	0.19579 (6)	0.48599 (5)	0.70265 (2)	0.01910 (12)	
N2	-0.0279 (2)	0.6233 (2)	0.73187 (8)	0.0204 (4)	
N3	0.3282 (2)	0.53991 (17)	0.56901 (8)	0.0170 (4)	
N4	0.06743 (19)	0.50248 (18)	0.51464 (7)	0.0162 (4)	
C1	0.2466 (2)	0.1454 (2)	0.58446 (9)	0.0181 (4)	
C2	0.1771 (3)	-0.0570 (2)	0.55108 (11)	0.0278 (5)	0.618 (8)
H2A	0.2185	-0.0870	0.5181	0.033*	0.618 (8)
H2B	0.0832	-0.0156	0.5417	0.033*	0.618 (8)
C3	0.1459 (5)	-0.1621 (4)	0.5862 (2)	0.0325 (13)	0.618 (8)
H3A	0.0719	-0.2141	0.5678	0.039*	0.618 (8)
H3B	0.2376	-0.2096	0.5912	0.039*	0.618 (8)
C4	0.0910 (4)	-0.1317 (4)	0.63923 (14)	0.0540 (10)	0.618 (8)
H4A	0.0742	-0.2057	0.6590	0.081*	0.618 (8)
H4B	-0.0017	-0.0869	0.6351	0.081*	0.618 (8)

H4C	0.1644	-0.0823	0.6585	0.081*	0.618 (8)
C80	0.1771 (3)	-0.0570 (2)	0.55108 (11)	0.0278 (5)	0.382 (8)
H80A	0.2327	-0.1285	0.5399	0.033*	0.382 (8)
H80B	0.1301	-0.0204	0.5191	0.033*	0.382 (8)
C30	0.0531 (8)	-0.0980 (6)	0.5891 (3)	0.031 (2)	0.382 (8)
H30A	-0.0184	-0.0312	0.5912	0.037*	0.382 (8)
H30B	0.0002	-0.1663	0.5720	0.037*	0.382 (8)
C40	0.0910 (4)	-0.1317 (4)	0.63923 (14)	0.0540 (10)	0.382 (8)
H40A	0.0021	-0.1544	0.6576	0.081*	0.382 (8)
H40B	0.1398	-0.0645	0.6578	0.081*	0.382 (8)
H40C	0.1584	-0.2003	0.6385	0.081*	0.382 (8)
N1	0.2807 (2)	0.0299 (2)	0.57585 (10)	0.0293 (5)	0.50
C5	0.4367 (6)	-0.0111 (5)	0.5768 (3)	0.0210 (11)	0.50
H5A	0.5005	0.0539	0.5641	0.025*	0.50
H5B	0.4462	-0.0812	0.5532	0.025*	0.50
C6	0.4858 (5)	-0.0460 (5)	0.6335 (2)	0.0235 (10)	0.50
H6A	0.4651	0.0209	0.6578	0.028*	0.50
H6B	0.4298	-0.1173	0.6447	0.028*	0.50
C7	0.6503 (6)	-0.0740 (5)	0.6360 (3)	0.0325 (13)	0.50
H7A	0.6809	-0.0963	0.6721	0.049*	0.50
H7B	0.7054	-0.0029	0.6254	0.049*	0.50
H7C	0.6702	-0.1407	0.6122	0.049*	0.50
N10	0.2807 (2)	0.0299 (2)	0.57585 (10)	0.0293 (5)	0.50
C50	0.4217 (7)	-0.0203 (5)	0.6042 (3)	0.0279 (13)	0.50
H50A	0.4466	0.0270	0.6363	0.033*	0.50
H50B	0.4068	-0.1051	0.6144	0.033*	0.50
C60	0.5433 (7)	-0.0108 (5)	0.5656 (3)	0.0360 (13)	0.50
H60A	0.5545	0.0740	0.5547	0.043*	0.50
H60B	0.5169	-0.0586	0.5337	0.043*	0.50
C70	0.6906 (7)	-0.0567 (6)	0.5903 (3)	0.0447 (16)	0.50
H70A	0.7677	-0.0504	0.5645	0.067*	0.50
H70B	0.6797	-0.1408	0.6009	0.067*	0.50
H70C	0.7180	-0.0081	0.6214	0.067*	0.50
C8	0.0275 (2)	0.5569 (2)	0.69392 (9)	0.0178 (4)	
С9	-0.1698 (3)	0.6864 (2)	0.72549 (11)	0.0263 (5)	
H9A	-0.1865	0.7086	0.6880	0.032*	
H9B	-0.1652	0.7615	0.7464	0.032*	
C10	-0.2992 (3)	0.6109 (3)	0.74297 (12)	0.0355 (7)	
H10A	-0.2835	0.5887	0.7805	0.043*	
H10B	-0.3050	0.5360	0.7220	0.043*	
C11	-0.4437 (3)	0.6802 (4)	0.73570 (13)	0.0472 (9)	
H11A	-0.5253	0.6304	0.7473	0.071*	
H11B	-0.4602	0.7007	0.6984	0.071*	
H11C	-0.4383	0.7540	0.7567	0.071*	
C12	0.0537 (3)	0.6428 (2)	0.78277 (9)	0.0234 (5)	
H12A	0.1123	0.5701	0.7918	0.028*	
H12B	-0.0177	0.6551	0.8108	0.028*	
C13	0.1564 (3)	0.7511 (2)	0.78105 (10)	0.0242 (5)	
H13A	0.0972	0.8253	0.7767	0.029*	

H13B	0.2198	0.7439	0.7503	0.029*
C14	0.2533 (3)	0.7595 (3)	0.83168 (11)	0.0304 (6)
H14A	0.3183	0.8295	0.8297	0.046*
H14B	0.3131	0.6865	0.8357	0.046*
H14C	0.1906	0.7678	0.8620	0.046*
C15	0.4586 (3)	0.5575 (2)	0.59424 (10)	0.0202 (5)
H15	0.4744	0.5230	0.6282	0.024*
C16	0.5719 (3)	0.6238 (2)	0.57324 (10)	0.0215 (5)
H16	0.6628	0.6342	0.5925	0.026*
C17	0.5501 (3)	0.6745 (2)	0.52364 (10)	0.0227 (5)
H17	0.6262	0.7192	0.5080	0.027*
C18	0.4137 (3)	0.6584 (2)	0.49713 (9)	0.0193 (4)
H18	0.3948	0.6930	0.4633	0.023*
C19	0.3063 (2)	0.59112 (19)	0.52103 (9)	0.0161 (4)
C20	0.1614 (2)	0.5730 (2)	0.49415 (9)	0.0169 (4)
H20	0.1376	0.6131	0.4619	0.020*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.01450 (9)	0.01688 (9)	0.01615 (10)	0.00097 (6)	0.00017 (6)	-0.00067 (6)
S1	0.0254 (3)	0.0220 (3)	0.0437 (4)	0.0073 (2)	-0.0170 (3)	-0.0097 (3)
S2	0.0160 (3)	0.0172 (3)	0.0413 (4)	-0.0007 (2)	-0.0038 (2)	0.0019 (2)
S3	0.0162 (3)	0.0263 (3)	0.0201 (3)	0.0040 (2)	-0.0029 (2)	-0.0056 (2)
S4	0.0159 (3)	0.0221 (3)	0.0192 (3)	0.0031 (2)	-0.0004 (2)	-0.0007 (2)
N2	0.0146 (9)	0.0258 (10)	0.0207 (10)	0.0011 (8)	0.0002 (7)	-0.0066 (8)
N3	0.0169 (9)	0.0166 (9)	0.0172 (9)	0.0019 (7)	-0.0018 (7)	-0.0009 (7)
N4	0.0135 (9)	0.0192 (9)	0.0156 (9)	-0.0008 (7)	-0.0038 (7)	-0.0006 (7)
C1	0.0185 (10)	0.0167 (10)	0.0193 (11)	0.0003 (8)	0.0025 (8)	0.0035 (9)
C2	0.0275 (13)	0.0207 (12)	0.0348 (14)	-0.0004 (10)	-0.0021 (10)	-0.0054 (11)
C3	0.031 (2)	0.022 (2)	0.045 (3)	-0.0029 (18)	-0.0006 (19)	-0.0092 (19)
C4	0.046 (2)	0.075 (3)	0.0421 (19)	-0.0291 (19)	0.0068 (15)	-0.0073 (18)
C80	0.0275 (13)	0.0207 (12)	0.0348 (14)	-0.0004 (10)	-0.0021 (10)	-0.0054 (11)
C30	0.026 (4)	0.022 (4)	0.043 (4)	-0.006 (3)	-0.003 (3)	-0.005 (3)
C40	0.046 (2)	0.075 (3)	0.0421 (19)	-0.0291 (19)	0.0068 (15)	-0.0073 (18)
N1	0.0196 (10)	0.0189 (10)	0.0493 (14)	0.0004 (8)	-0.0019 (9)	-0.0003 (10)
C5	0.014 (3)	0.023 (3)	0.026 (3)	0.0064 (18)	0.008 (2)	-0.008 (3)
C6	0.013 (2)	0.022 (2)	0.034 (3)	0.0030 (18)	-0.011 (2)	0.005 (2)
C7	0.019 (2)	0.022 (2)	0.056 (4)	0.0074 (19)	-0.011 (2)	-0.012 (2)
N10	0.0196 (10)	0.0189 (10)	0.0493 (14)	0.0004 (8)	-0.0019 (9)	-0.0003 (10)
C50	0.029 (3)	0.020 (3)	0.035 (4)	0.004 (2)	0.004 (3)	-0.003 (3)
C60	0.037 (4)	0.027 (3)	0.044 (3)	0.007 (2)	-0.003 (3)	0.002 (2)
C70	0.028 (3)	0.037 (3)	0.070 (5)	0.006 (3)	-0.001 (3)	-0.006 (3)
C8	0.0148 (10)	0.0182 (10)	0.0206 (11)	-0.0026 (8)	0.0029 (8)	-0.0004 (9)
С9	0.0171 (11)	0.0322 (13)	0.0294 (13)	0.0073 (10)	0.0000 (9)	-0.0119 (11)
C10	0.0184 (12)	0.0529 (18)	0.0356 (15)	0.0001 (12)	0.0065 (10)	-0.0130 (14)
C11	0.0168 (13)	0.082 (3)	0.0430 (17)	0.0039 (14)	0.0017 (11)	-0.0247 (18)
C12	0.0218 (11)	0.0296 (13)	0.0188 (11)	0.0009 (10)	0.0001 (9)	-0.0060 (10)

012	0.0102 (11)	0.0240 (12)	0.0070 (12)	0.0021 (0)	0.0042 (0)	0.0050 (10)
C13	0.0192(11)	0.0249 (12)	0.0279 (13)	0.0031(9)	-0.0042(9)	-0.0050(10)
C14	0.0230(12)	0.0339 (14)	0.0329 (14)	0.0055 (11)	-0.0082(10)	-0.0069 (11)
	0.0184(11)	0.0198 (11)	0.0221(11)	0.0017(9)	-0.0051(8)	0.0007 (9)
C16	0.0154(10)	0.0198 (11)	0.0288(12)	0.0000 (9)	-0.0046(9)	-0.0037(10)
C17	0.0180(11)	0.0181 (11)	0.0319 (13)	-0.0008 (9)	0.0013 (9)	-0.0005(10)
C18	0.0191(11)	0.01//(11)	0.0212(11)	-0.0008(8)	0.0013 (8)	0.0001 (9)
C19	0.0169(10)	0.0141(10)	0.0175(11)	0.0010 (8)	0.0007 (8)	-0.0030(8)
C20	0.0164 (10)	0.0187 (10)	0.0156 (10)	0.0022 (8)	0.0002 (8)	-0.0017(8)
Geometric paran	neters (Å, °)					
Cd—N3		2.377 (2)	C6—He	бA	0.990	0
Cd—S1		2.6124 (8)	С6—Не	бB	0.990	0
Cd—N4		2.6211 (19)	С7—Н7	7A	0.980	0
Cd—S3		2.6279 (7)	С7—Н7	7B	0.980	0
Cd—S4		2.6407 (7)	С7—Н7	7C	0.980	0
Cd—S2		2.7165 (7)	N10—0	250	1.548	(7)
S1—C1		1.727 (2)	C50—C	260	1.508	(9)
S2—C1		1.709 (2)	C50—H	150A	0.990	0
S3—C8		1.735 (2)	C50—H	I50B	0.990	0
S4—C8		1.726 (2)	C60—C	270	1.543	(8)
N2—C8		1.329 (3)	C60—H	160A	0.990	0
N2—C9		1.470 (3)	C60—H	I60B	0.990	0
N2—C12		1.480 (3)	C70—H	170A	0.980	0
N3—C15		1.338 (3)	С70—Н	I70B	0.980	0
N3—C19		1.353 (3)	С70—Н	I70C	0.980	0
N4—C20		1.284 (3)	C9—C1	0	1.525	(4)
N4—N4 ⁱ		1.409 (3)	С9—Н9	0A	0.990	0
C1—N10		1.342 (3)	С9—Н9)B	0.990	0
C1—N1		1.342 (3)	C10—C	211	1.527	(4)
C2—N1		1.474 (3)	C10—H	I10A	0.990	0
C2—C3		1.505 (5)	C10—H	I10B	0.990	0
C2—H2A		0.9900	C11—H	[11A	0.980	0
C2—H2B		0.9900	C11—H	[11B	0.980	0
C3—C4		1.493 (6)	C11—H	111C	0.980	0
С3—НЗА		0.9900	C12—C	213	1.526	(4)
С3—Н3В		0.9900	C12—H	I12A	0.990	0
C4—H4A		0.9800	C12—H	I12B	0.990	0
C4—H4B		0.9800	C13—C	214	1.532	(3)
C4—H4C		0.9800	C13—H	I13A	0.990	0
C80—N10		1.474 (3)	C13—H	I13B	0.990	0
C80—C30		1.578 (8)	C14—H	[14A	0.980	0
C80—H80A		0.9900	C14—H	I14B	0.980	0
C80—H80B		0.9900	C14—H	I14C	0.980	0
C30—C40		1.358 (9)	C15—C	216	1.389	(3)
C30—H30A		0.9900	C15—H	115	0.950	0
С30—Н30В		0.9900	C16—C	217	1.387	(4)
C40—H40A		0.9800	C16—H	116	0.950	0
C40—H40B		0.9800	C17—C	218	1.398	(3)

C40—H40C	0.9800	C17—H17	0.9500
N1—C5	1.487 (5)	C18—C19	1.388 (3)
C5—C6	1.539 (8)	C18—H18	0.9500
C5—H5A	0.9900	C19—C20	1.472 (3)
С5—Н5В	0.9900	С20—Н20	0.9500
C6—C7	1.524 (7)		
N3—Cd—S1	125.86 (5)	С6—С7—Н7А	109.5
N3—Cd—N4	65.89 (6)	С6—С7—Н7В	109.5
S1—Cd—N4	87.65 (5)	H7A—C7—H7B	109.5
N3—Cd—S3	106.92 (5)	С6—С7—Н7С	109.5
S1—Cd—S3	113.49 (2)	H7A—C7—H7C	109.5
N4—Cd—S3	79.19 (4)	H7B—C7—H7C	109.5
N3—Cd—S4	94.63 (5)	C1—N10—C80	123.5 (2)
S1—Cd—S4	132.59 (2)	C1—N10—C50	117.5 (3)
N4—Cd—S4	135 68 (5)	C80—N10—C50	117.6 (3)
\$3-Cd-\$4	68 714 (18)	C60 - C50 - N10	106.6 (6)
N3_Cd_S2	87.49 (5)	C60 - C50 - H50A	110.4
S1_Cd_S2	67.45 (2)	N10-C50-H50A	110.4
S1—Cd—S2	122.40(5)	C60 C50 H50R	110.4
$N_4 - C_4 - S_2$	122.40(3)	N10 C50 U50D	110.4
S5-Cd-S2	138.03(2)		110.4
S4—Cd—S2	94.19 (2)	H30A-C30-H30B	100.0
	88.28 (8)	$C_{30} = C_{60} = C_{70}$	110.9 (5)
C1 = S2 = Cd	85.28 (8)	C50—C60—H60A	109.5
C8—S3—Cd	86.54 (8)	C/0C60H60A	109.5
C8—S4—Cd	86.30 (8)	С50—С60—Н60В	109.5
C8—N2—C9	122.7 (2)	С70—С60—Н60В	109.5
C8—N2—C12	121.6 (2)	H60A—C60—H60B	108.1
C9—N2—C12	115.64 (19)	С60—С70—Н70А	109.5
C15—N3—C19	117.8 (2)	С60—С70—Н70В	109.5
C15—N3—Cd	119.82 (16)	H70A—C70—H70B	109.5
C19—N3—Cd	122.14 (15)	С60—С70—Н70С	109.5
C20—N4—N4 ⁱ	112.8 (2)	Н70А—С70—Н70С	109.5
C20—N4—Cd	114.97 (14)	H70B—C70—H70C	109.5
N4 ⁱ —N4—Cd	132.07 (19)	N2—C8—S4	121.29 (18)
N10-C1-N1	0.0 (2)	N2—C8—S3	120.26 (17)
N10-C1-S2	120.96 (18)	S4—C8—S3	118.45 (13)
N1—C1—S2	120.96 (18)	N2	112.7 (2)
N10-C1-S1	120.08 (18)	N2—C9—H9A	109.1
N1—C1—S1	120.08 (18)	С10—С9—Н9А	109.1
S2—C1—S1	118.96 (14)	N2—C9—H9B	109.1
N1—C2—C3	112.9 (3)	С10—С9—Н9В	109.1
N1—C2—H2A	109.0	Н9А—С9—Н9В	107.8
С3—С2—Н2А	109.0	C9—C10—C11	110.7 (3)
N1—C2—H2B	109.0	С9—С10—Н10А	109.5
C3—C2—H2B	109.0	C11—C10—H10A	109.5
H2A—C2—H2B	107.8	С9—С10—Н10В	109.5
C4—C3—C2	115.8 (3)	C11—C10—H10B	109.5
С4—С3—НЗА	108.3	H10A—C10—H10B	108.1

	100.0		100 -
С2—С3—НЗА	108.3	CIO-CII-HIIA	109.5
С4—С3—Н3В	108.3	CI0—CII—HIIB	109.5
С2—С3—Н3В	108.3	HIIA—CII—HIIB	109.5
H3A—C3—H3B	107.4	C10—C11—H11C	109.5
С3—С4—Н4А	109.5	H11A—C11—H11C	109.5
C3—C4—H4B	109.5	H11B—C11—H11C	109.5
H4A—C4—H4B	109.5	N2—C12—C13	112.1 (2)
C3—C4—H4C	109.5	N2—C12—H12A	109.2
H4A—C4—H4C	109.5	C13—C12—H12A	109.2
H4B—C4—H4C	109.5	N2—C12—H12B	109.2
N10-C80-C30	112.8 (3)	C13—C12—H12B	109.2
N10-C80-H80A	109.0	H12A—C12—H12B	107.9
С30—С80—Н80А	109.0	C12-C13-C14	110.9 (2)
N10-C80-H80B	109.0	C12-C13-H13A	109.5
С30—С80—Н80В	109.0	C14—C13—H13A	109.5
H80A—C80—H80B	107.8	С12—С13—Н13В	109.5
C40—C30—C80	119.5 (5)	C14—C13—H13B	109.5
С40—С30—Н30А	107.4	H13A—C13—H13B	108.1
С80—С30—Н30А	107.4	C13—C14—H14A	109.5
С40—С30—Н30В	107.4	C13—C14—H14B	109.5
С80—С30—Н30В	107.4	H14A—C14—H14B	109.5
H30A—C30—H30B	107.0	C13—C14—H14C	109.5
C30—C40—H40A	109.5	H14A—C14—H14C	109.5
C30—C40—H40B	109.5	H14B—C14—H14C	109.5
H40A—C40—H40B	109.5	N3-C15-C16	1233(2)
C_{30} C_{40} $H_{40}C$	109.5	N3-C15-H15	118.4
$H_{40A} - C_{40} - H_{40C}$	109.5	$C_{16} - C_{15} - H_{15}$	118.4
H_{40} H	109.5	$C_{10} = C_{10} = C_{10} = C_{10}$	110.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.5	$C_{17} = C_{10} = C_{15}$	110.9 (2)
$C_1 = N_1 = C_2$	123.3(2)	$C_{1} = C_{10} = H_{10}$	120.0
CI = NI = CS	121.2 (3)	C13-C17-C18	120.0
$C_2 = N_1 = C_5$	113.4 (3)		118.5 (2)
NI-C5-C6	109.6 (5)	C16C17H17	120.7
NI—C5—H5A	109.8	C18—C17—H17	120.7
С6—С5—Н5А	109.8	C19—C18—C17	118.9 (2)
NI—C5—H5B	109.8	С19—С18—Н18	120.6
С6—С5—Н5В	109.8	C17—C18—H18	120.6
H5A—C5—H5B	108.2	N3—C19—C18	122.7 (2)
C7—C6—C5	109.8 (5)	N3—C19—C20	117.2 (2)
С7—С6—Н6А	109.7	C18—C19—C20	120.1 (2)
С5—С6—Н6А	109.7	N4—C20—C19	119.5 (2)
С7—С6—Н6В	109.7	N4—C20—H20	120.3
С5—С6—Н6В	109.7	C19—C20—H20	120.3
H6A—C6—H6B	108.2		
N3—Cd—S1—C1	69.94 (10)	S1—C1—N1—C2	0.0 (4)
N4—Cd—S1—C1	127.66 (9)	N10-C1-N1-C5	0(100)
S3—Cd—S1—C1	-155.19 (8)	S2—C1—N1—C5	-17.3 (5)
S4—Cd—S1—C1	-73.14 (8)	S1—C1—N1—C5	162.8 (4)
S2-Cd-S1-C1	0.95 (8)	C3—C2—N1—C1	-120.0(3)
N_{3} Cd S_{2} C1	-131 74 (9)	C_{3} C_{2} N_{1} C_{5}	76 1 (4)
115 Cu 02 CI	101.11(7)	05 02 111 05	, 0.1 (=)

S1—Cd—S2—C1	-0.97 (8)	C1—N1—C5—C6	88.3 (5)
N4—Cd—S2—C1	-72.54 (9)	C2—N1—C5—C6	-107.3 (4)
S3—Cd—S2—C1	96.17 (9)	N1—C5—C6—C7	-173.3 (4)
S4—Cd—S2—C1	133.80 (8)	N1-C1-N10-C80	0(40)
N3—Cd—S3—C8	-87.89 (9)	S2—C1—N10—C80	179.9 (2)
S1—Cd—S3—C8	129.01 (8)	S1—C1—N10—C80	0.0 (4)
N4—Cd—S3—C8	-148.37 (9)	N1-C1-N10-C50	0(100)
S4—Cd—S3—C8	0.51 (8)	S2-C1-N10-C50	13.8 (5)
S2—Cd—S3—C8	41.31 (10)	S1-C1-N10-C50	-166.1 (4)
N3—Cd—S4—C8	105.86 (9)	C30-C80-N10-C1	-74.1 (4)
S1—Cd—S4—C8	-103.38 (8)	C30-C80-N10-C50	92.0 (5)
N4—Cd—S4—C8	46.11 (10)	C1-N10-C50-C60	-95.8 (5)
S3—Cd—S4—C8	-0.51 (8)	C80-N10-C50-C60	97.3 (5)
S2—Cd—S4—C8	-166.33 (8)	N10-C50-C60-C70	179.0 (5)
S1—Cd—N3—C15	-110.58 (17)	C9—N2—C8—S4	179.07 (19)
N4—Cd—N3—C15	-178.32 (19)	C12—N2—C8—S4	1.9 (3)
S3—Cd—N3—C15	112.22 (17)	C9—N2—C8—S3	-0.9 (3)
S4—Cd—N3—C15	43.08 (17)	C12—N2—C8—S3	-178.15 (18)
S2—Cd—N3—C15	-50.92 (17)	Cd—S4—C8—N2	-179.2 (2)
S1—Cd—N3—C19	63.49 (18)	Cd—S4—C8—S3	0.82 (13)
N4—Cd—N3—C19	-4.25 (16)	Cd—S3—C8—N2	179.2 (2)
S3—Cd—N3—C19	-73.71 (17)	Cd—S3—C8—S4	-0.82 (13)
S4—Cd—N3—C19	-142.85 (16)	C8—N2—C9—C10	90.9 (3)
S2—Cd—N3—C19	123.15 (17)	C12—N2—C9—C10	-91.7 (3)
N3-Cd-N4-C20	1.00 (15)	N2-C9-C10-C11	179.9 (2)
S1-Cd-N4-C20	-130.34 (16)	C8—N2—C12—C13	88.1 (3)
S3—Cd—N4—C20	115.21 (16)	C9—N2—C12—C13	-89.3 (3)
S4—Cd—N4—C20	71.62 (17)	N2-C12-C13-C14	-172.8 (2)
S2—Cd—N4—C20	-69.06 (17)	C19—N3—C15—C16	-1.0 (3)
N3—Cd—N4—N4 ⁱ	-174.1 (3)	Cd—N3—C15—C16	173.34 (18)
S1—Cd—N4—N4 ⁱ	54.6 (3)	N3-C15-C16-C17	-0.1 (4)
S3—Cd—N4—N4 ⁱ	-59.9 (2)	C15—C16—C17—C18	1.1 (4)
S4—Cd—N4—N4 ⁱ	-103.4 (2)	C16—C17—C18—C19	-0.9 (4)
S2—Cd—N4—N4 ⁱ	115.9 (2)	C15—N3—C19—C18	1.1 (3)
Cd—S2—C1—N10	-178.4 (2)	Cd—N3—C19—C18	-173.05 (17)
Cd—S2—C1—N1	-178.4 (2)	C15—N3—C19—C20	-178.9 (2)
Cd—S2—C1—S1	1.54 (13)	Cd—N3—C19—C20	6.9 (3)
Cd—S1—C1—N10	178.3 (2)	C17-C18-C19-N3	-0.2 (3)
Cd—S1—C1—N1	178.3 (2)	C17-C18-C19-C20	179.8 (2)
Cd—S1—C1—S2	-1.60 (13)	N4 ⁱ —N4—C20—C19	178.0 (2)
N1—C2—C3—C4	55.2 (4)	Cd—N4—C20—C19	1.9 (3)
N10-C80-C30-C40	-47.3 (7)	N3-C19-C20-N4	-5.7 (3)
S2-C1-N1-C2	179.9 (2)	C18-C19-C20-N4	174.3 (2)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.			
Hydrogen-bond geometry (Å, °)			

D—H···A

D—Н Н…*А*

 $D \cdots A$

D—H···A

C9—H9B···S4 ⁱⁱ	0.99	2.83	3.815 (3)	171	
C16—H16…S3 ⁱⁱⁱ	0.95	2.82	3.674 (3)	150	
C3—H3B····Cg ^{iv}	0.95	2.99	3.853 (5)	147	
Symmetry codes: (ii) $-x$, $y+1/2$, $-z+3/2$; (iii) $x+1$, y , z ; (iv) x , $y-1$, z .					

sup-10

Fig. 2

Fig. 3